Identification and characterization of a tachykinin-containing neuroendocrine organ in the commissural ganglion of the crab Cancer productus.

نویسندگان

  • Daniel I Messinger
  • Kimberly K Kutz
  • Thuc Le
  • Derek R Verley
  • Yun-Wei A Hsu
  • Christina T Ngo
  • Shaun D Cain
  • John T Birmingham
  • Lingjun Li
  • Andrew E Christie
چکیده

A club-shaped, tachykinin-immunopositive structure first described nearly two decades ago in the commissural ganglion (CoG) of three species of decapod crustaceans has remained enigmatic, as its function is unknown. Here, we use a combination of anatomical, mass spectrometric and electrophysiological techniques to address this issue in the crab Cancer productus. Immunohistochemistry using an antibody to the vertebrate tachykinin substance P shows that a homologous site exists in each CoG of this crab. Confocal microscopy reveals that its structure and organization are similar to those of known neuroendocrine organs. Based on its location in the anterior medial quadrant of the CoG, we have named this structure the anterior commissural organ (ACO). Matrix-assisted laser desorption/ionization Fourier transform mass spectrometry shows that the ACO contains the peptide APSGFLGMRamide, commonly known as Cancer borealis tachykinin-related peptide Ia (CabTRP Ia). Using the same technique, we show that CabTRP Ia is also released into the hemolymph. As no tachykinin-like labeling is seen in any of the other known neuroendocrine sites of this species (i.e. the sinus gland, the pericardial organ and the anterior cardiac plexus), the ACO is a prime candidate to be the source of CabTRP Ia present in the circulatory system. Our electrophysiological studies indicate that one target of hemolymph-borne CabTRP Ia is the foregut musculature. Here, no direct CabTRP Ia innervation is present, yet several gastric mill and pyloric muscles are nonetheless modulated by hormonally relevant concentrations of the peptide. Collectively, our findings show that the C. productus ACO is a neuroendocrine organ providing hormonal CabTRP Ia modulation to the foregut musculature. Homologous structures in other decapods are hypothesized to function similarly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Members of the crustacean hyperglycemic hormone (CHH) peptide family are differentially distributed both between and within the neuroendocrine organs of Cancer crabs: implications for differential release and pleiotropic function.

The crustacean hyperglycemic hormone (CHH) family of peptides includes CHH, moult-inhibiting hormone (MIH) and mandibular organ-inhibiting hormone (MOIH). In the crab Cancer pagurus, isoforms of these peptides, as well as CHH precursor-related peptide (CPRP), have been identified in the X-organ-sinus gland (XO-SG) system. Using peptides isolated from the C. pagurus SG, antibodies to each family...

متن کامل

Mass spectrometric characterization and physiological actions of VPNDWAHFRGSWamide, a novel B type allatostatin in the crab, Cancer borealis.

The neural networks in the crustacean stomatogastric ganglion are modulated by neuroactive substances released locally into the neuropil of the stomatogastric ganglion and by circulating hormones released by neuroendocrine structures including the pericardial organs. Using nanoscale liquid chromatography coupled to electrospray ionization quadrupole-time-of-flight mass spectrometry, we have ide...

متن کامل

Multiple modulators act on the cardiac ganglion of the crab, Cancer borealis.

Neuromodulators can change the output of neural circuits. The crustacean cardiac ganglion (CG) drives the contractions of the heart. The CG is a direct target for neurohormones that are released from the pericardial organs and other neuroendocrine sites. In this study, we have characterized for the first time the physiological actions of the peptides red pigment concentrating hormone (RPCH), Ca...

متن کامل

Anatomical Organization of Multiple Modulatory Inputs in a Rhythmic Motor System

In rhythmic motor systems, descending projection neuron inputs elicit distinct outputs from their target central pattern generator (CPG) circuits. Projection neuron activity is regulated by sensory inputs and inputs from other regions of the nervous system, relaying information about the current status of an organism. To gain insight into the organization of multiple inputs targeting a projecti...

متن کامل

A newly identified extrinsic input triggers a distinct gastric mill rhythm via activation of modulatory projection neurons.

Neuronal network flexibility enables animals to respond appropriately to changes in their internal and external states. We are using the isolated crab stomatogastric nervous system to determine how extrinsic inputs contribute to network flexibility. The stomatogastric system includes the well-characterized gastric mill (chewing) and pyloric (filtering of chewed food) motor circuits in the stoma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 208 Pt 17  شماره 

صفحات  -

تاریخ انتشار 2005